src.modules.backend.solver
Solver strategies subpackage. This package contains the solver strategy implementations for the Wordle solver.
- class src.modules.backend.solver.StatelessSolverStrategy[source]
Abstract base class for stateless Wordle solver strategies.
- abstractmethod get_top_suggestions(constraints, count=10, word_manager=None, stateless_word_manager=None, prefer_common=True, word_set=None)[source]
Get top N suggestions based on the strategy’s algorithm using stateless filtering.
- Parameters:
constraints (
List
[Tuple
[str
,str
]]) – List of (guess, result) tuples representing game constraintscount (
int
) – Number of suggestions to returnword_manager (
Optional
[WordManager
]) – Optional WordManager instance for backward compatibilitystateless_word_manager (
Optional
[StatelessWordManager
]) – Optional StatelessWordManager for pure stateless operationsprefer_common (
bool
) – Whether to prefer common words in suggestionsword_set (
Optional
[Set
[str
]]) – Optional specific set of words to consider. If None, uses all words.
- Return type:
- Returns:
List of suggested words, ordered by preference
- class src.modules.backend.solver.StatelessFrequencyStrategy[source]
Stateless strategy that uses actual word frequency data from corpus to suggest words.
- class src.modules.backend.solver.StatelessEntropyStrategy[source]
Stateless strategy that uses information theory to maximize information gain.
- class src.modules.backend.solver.StatelessHybridStrategy(frequency_weight=0.4, entropy_weight=0.6)[source]
Stateless strategy that combines frequency-based scoring with entropy for optimal word suggestions.
- class src.modules.backend.solver.StatelessMinimaxStrategy[source]
Stateless strategy that uses minimax algorithm to minimize worst-case remaining words.
- class src.modules.backend.solver.StatelessTwoStepStrategy(max_patterns_to_evaluate=20)[source]
Stateless strategy that looks ahead two steps to choose optimal guesses.
- class src.modules.backend.solver.StatelessWeightedGainStrategy(entropy_weight=0.5, positional_weight=0.3, frequency_weight=0.2)[source]
Stateless strategy that combines multiple information metrics for better word suggestions.
This strategy uses a weighted combination of: - Shannon entropy (information gain) - Positional information (value of exact position matches) - Word frequency (likelihood of being the answer)
- class src.modules.backend.solver.ModernizedStrategyFactory[source]
Modernized factory for creating stateless solver strategies only.
- classmethod create_strategy(strategy_name, **kwargs)[source]
Create a stateless strategy instance.
- Parameters:
strategy_name (
str
) – Name of the strategy to create**kwargs – Additional arguments for strategy initialization
- Return type:
- Returns:
StatelessSolverStrategy instance
- Raises:
ValueError – If strategy name is not found
- src.modules.backend.solver.SolverStrategy
alias of
StatelessSolverStrategy
- src.modules.backend.solver.FrequencyStrategy
alias of
StatelessFrequencyStrategy
- src.modules.backend.solver.EntropyStrategy
alias of
StatelessEntropyStrategy
- src.modules.backend.solver.HybridFrequencyEntropyStrategy
alias of
StatelessHybridStrategy
- src.modules.backend.solver.MinimaxStrategy
alias of
StatelessMinimaxStrategy
- src.modules.backend.solver.TwoStepStrategy
alias of
StatelessTwoStepStrategy
- src.modules.backend.solver.WeightedGainStrategy
alias of
StatelessWeightedGainStrategy
- src.modules.backend.solver.StrategyFactory
alias of
ModernizedStrategyFactory